SMAC 2003
The Automatic Iteration of SMAC

Brian G. McHenry
Raymond R. McHenry

McHenry Consultants, Inc.
Cary, NC
E-mail: info@mchenrysoftware.com
Website: www.mchenrysoftware.com
SMAC2003
The Automatic Iteration of SMAC

- What is SMAC?
- Why Automatically Iterate SMAC?
- Prior Work
- Research Approach
- Results
- Discussion and Conclusions
- Future Plans
The Automatic Iteration of SMAC

What is SMAC?

- Simulation Model of Automobile Collisions
- Similar to performing a mathematical full-scale test
- Created in response to need for more accurate reconstructions and uniform interpretation of evidence
SMAC2003
The Automatic Iteration of SMAC

- What is SMAC?
 - SMAC Includes:
 - Trajectory Model
 - Tires forces modeled pre-impact, during impact, post impact
 - Conservation of Linear and Angular Momentum throughout the simulated event
SMAC2003
The Automatic Iteration of SMAC

What is SMAC?

- SMAC Includes:
 - Collision Model
 - Finite duration of the impact
 - Tire forces fully active during collision
What is SMAC?

- The inclusion of both Trajectory & Collision Models in SMAC reduces sensitivity to any limitations of either technique.
- SMAC includes provisions for multiple impact, sustained contacts, and provides generality.
SMAC2003
The Automatic Iteration of SMAC

- What is SMAC?
- Why Automatically Iterate SMAC?
 - Reduces or eliminates the need to manually iterate
 - Provides testing and refinement of evidence match.
 - Allows sensitivity testing of input variables
 - Includes unlimited objective iterations
SMAC2003
The Automatic Iteration of SMAC

- What is SMAC?
- Why Automatically Iterate SMAC?
 - Saves time!
 - Time required for “best match” limited only by processor speed
SMAC2003
The Automatic Iteration of SMAC

- What is SMAC?
- Why Automatically Iterate SMAC?
- Prior Work
 - Jones, SAE 750894
 - “To make SMAC ‘user-orientated’ so that users can operate with ease”
 - Found that it is “insufficient to iterate on rest positions alone”
SMAC2003
The Automatic Iteration of SMAC

- What is SMAC?
- Why Automatically Iterate SMAC?
- Prior Work
 - Moffatt and Byrd, 1980 (DOT-HS-8-01820)
 - Iterated impact speeds, steering & braking
 - Limited by computer costs and capabilities
SMAC2003
The Automatic Iteration of SMAC

- What is SMAC?
- Why Automatically Iterate SMAC?
- Prior Work
 - CRASH-97 – 1997, (SAE 970949)
 - Used automatic iteration of SMAC for motions between separation and rest to refine separation speeds
 - Did not include collision simulation due to computational time considerations
SMAC2003
The Automatic Iteration of SMAC

- What is SMAC?
- Why Automatically Iterate SMAC?
- Prior Work
- Research Approach

- With advent of gigahertz Pentium machines, iteration of complete SMAC including collision feasible
- This project an extension of our prior work on CRASH-97 (SAE 970949)
Research Approach:

- Create a “function” which provides a measure of the correlation of a SMAC reconstruction with measured evidence
- Choose or create a function minimization routine to guide iterations of SMAC to minimize the “function”
Correlation factor function

- What are important measures in any accident reconstruction?
 - Trajectory measurements
 - Damage measurements
Trajectory Measurements
Use Measured Scene Evidence

- Directions of travel
- Approx POI
- POR
- Tire tracks and characteristics
- Skidding? Tracking?
SMAC Correlation Function

- **Trajectory measurements**
 - The approximate positions and orientations of the vehicles at impact
 - The measured positions and orientations of the vehicles at rest
 - Distance POI to POR for each vehicle
 - Azimuth angle POI to POR for each vehicle
 - Direction of the System Momentum
Damage Measurements:
Use Vehicle Damage Evidence

Measure and Define Damage per:

Collision Deformation Classification (SAE J224 MAR80)

Equidistant Crush Measurement (SAE J2433)

Tumbas & Smith (SAE 880072) Damage Measurement Protocol
SMAC Correlation Function

- **Damage measurements:**
 - Damage width
 - Damage depth
 - Damage area
 - Centroid of the damage region
 - Clock direction of the approximate PDOP
SMAC Correlation Factor
Damage
ITERATION PROCEDURE

- Collision responses highly nonlinear
 - Any function minimization technique must handle step discontinuities
 - Restarts to insure a global v local minimum

- Weighting factors to establish priorities
 - Initially to grossly match evidence
 - Secondarily to assist in refinement of match

- Auxiliary calculations and checks
 - To help guide the iteration procedure
ITERATION PROCEDURE

Starting Values for ITERATION

- Original intent was simply for improvement
- CRASH-type interface and information
 - CRASH original intent as SMAC preprocessor
- Information required:
 - Impact positions and headings.
 - Rest positions and headings.
 - Wheel steer and drag
 - Vehicle type and specifications
 - Damage measurements.
ITERATION PROCEDURE

- For Initial development and testing of SMACITER
 - Used SMAC generated reconstructions based on the RICSAC tests

- Final testing of SMACITER
 - Used ‘raw’ reported test results and other high confidence reconstructions to test convergence ability of SMACITER
ITERATION PROCEDURE

- Variables iterated
 - Initial Speeds and Positions
 - Steering and Braking
 - Minor adjustments of steering and braking within ranges of uncertainty during iteration
 - Sideslip and Angular Velocity Options
 - Provide ability to address control losses preceding impact
SMAC2003
The Automatic Iteration of SMAC

- What is SMAC?
- Why Automatically Iterate SMAC?
- Prior Work
- Research Approach
- Results
RICSAC Test#4

VEHICLES:
NO. 1 — 1974 FORD TORINO
NO. 2 — 1974 FORD PINTO

VEHICLE #2 — TIRE SCUFFS
LEFT REAR
LEFT FRONT
RIGHT FRONT

VEHICLE #1 — TIRE SCUFFS
LEFT FRONT SCUFF
LEFT REAR SCUFF

VEHICLE #1 — RIGHT FRONT SCUFF

Scale (m)
RICSAC Test#4
1st Pass with CRASH results: 31.9 MPH
RICSAC Test#4 SMACITETER Final Results, 38.3 MPH
Correlation “Score” is a summation of the deviations from a perfect evidence match.
VEHICLES:
NO. 1 — 1974 CHEVROLET CHEVELLE
NO. 2 — 1974 CHEVROLET CHEVELLE
RICSAC Test#8
Impact Speeds 20.8 MPH, 20.8 MPH
RICSAC Test#8, SMAC RUN with CRASH

Speeds 19.5 MPH, 24.5 MPH

Click on Picture for Animation
Results with CRASH speeds
RICSAC Test#8, SMACITER Start with
CRASH Speeds 19.5 MPH, 24.5 MPH
RICSAC Test#8, SMACITER RESULTS
20.9 MPH, 20.8 MPH

Click on Picture for Animation
Summary of SMACITER Results
Vehicle#2
Start
24.5 MPH
V
RESULT
20.8 MPH

Vehicle#1
Start
19.5 MPH
V
RESULT
20.9 MPH

Click on Picture for Animation
SMACITER Test
with High Confidence Reconstruction
SMACITER Test
with High Confidence Reconstruction
SMAC 1st Pass

Click on Picture for Animation
SMACITER Test
with High Confidence Reconstruction
Final Result

Click on Picture for Animation

-6.912
Side-Slap Contact
SMAC2003
The Automatic Iteration of SMAC

- What is SMAC?
- Why Automatically Iterate SMAC?
- Prior Work
- Research Approach
- Results
- Discussion and Conclusions
Discussion and Conclusions
Impact Speed Correlation

Impact Velocity Absolute Error Percentage (%)
SMACITER vs RICSAC Test Results and High Confidence Reconstructions
ΔV Correlation

Impact Speed Change (DELTA-V) Absolute Error Percentage (%)
SMACITER vs RICSAC Test Results and High Confidence Reconstructions
Discussion and Conclusions

- SMACITER is a tool to aid and assist an accident investigation
- Feasibility of the automatic iteration of SMAC has been demonstrated
 - This research represents the 1st validation of SMAC without using Impact Speed as input
- SMACITER converges towards evidence match
 - Yields impact velocities within ±12%
 - Yields ΔV’s within ±8%
Discussion and Conclusions

- CRASH serves its original purpose as a pre-processor for SMAC
- A correlation factor or “score” is a desirable means of ranking the achieved match of evidence and thereby the quality and reliability of the reconstruction
SMAC2003

The Automatic Iteration of SMAC

- What is SMAC?
- Why Automatically Iterate SMAC?
- Prior Work
- Research Approach
- Results
- Discussion and Conclusions
- Future Plans
FUTURE PLANS

- Additional refinements of SMACITER
- Complete comparison of SMACITER with all available full-scale tests
- Further evaluation of a correlation factor or “score” as a potential measure of reconstruction accuracy
- Implementation of Restitution enhancements per SAE 970960
- 3D components – merging of 2 HVOSM vehicles with refined SMAC
End of Presentation

Thank you!