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SUMMARY

Both in the treatment of safety problems and in the expert evaluation
of motor vehicle accidents, the application of impact laws and the law of
conservation of energy is an excellent, but much too little known tool. It is

presented by means of some examples taken from practical situations and
somewhat generalized.



1. Laws of Conservation of Momentum, Angular Momentum Energy

The law of conservation of momentum is derived from Newton's Law.

Thus, for a point mass moving along a straight line, force equals mass

dv
P=m
dt

times acceleration,

or pdt=mdv  which integrates to JPdl=mv—v).

In words: The time integral of force is equal to the change in the

motion variable (momentum).

Similarly, for angular motion with constant arm of the moment M is
Jdw = Mdt = Prdt
or integrated, rfPdl=mitlw—w) -

In words: The time integral of the torque is equal to the change in

the moment of momentum (angular momentum).

The conservation of energy law also follows from Newton's basic law.

dv
We have Pds=m at ds = mdv-v = ': d (v3)

m
or integrated, fPds= , v

In words: The path integral of the force (work) is equal to the change

in kinetic energy.

Angular motion of rigid bodies is associated with similar angular
energy Jo¥2.. Since rectilinear and angular energies are scalar quantities,
they can be added directly to give the total energy of the rigid body. On the
other hand linear and angular momentum are vector quantities, which must

be taken into account in addition.

2. Collision of Two Bodies

Two free bodies (i.e., without external forces) coming together can
always be regarded as a system of point masses whose common center of
gravity remains at constant velocity v, as long as no external forces act on

the system. This law holds before, during and after the collision since the



forces which are set up in the process are internal forces for the system.
Thus,

N
my vyt myve = (my + mo) vy .

The behavior of the impacting bodies during and after the collision
depends first on the type of impact (direct or oblique central, eccentric
impact) and next on the elastic and plastic properties of the bodies at the
impact point (completely or partially elastic, completely inelastic impact).
In a completely inelastic central impact, the two bodies stick together and
move in this way at their common speed until it is reduced by external
resistance. Here the common speed u is attained with maximum compression
at the impact point is identical to the speed of the entire body and to the
speed v, of the system's center of gravity. In a completely elastic impact,
the bodies separate without having lost any of their total energy. In an

eccentric impact, rotational motion will also arise.

3. Incompletely Elastic, Direct, Central Impact

Here =v, and
mvi+tmeve=(m +mu=mv,+mevy .

The changes in momentum in the first phase of the impact up to

maximum CompreSSion are
mi(v,—u)=—m-_,(v._»-—u)=sl .

In the second phase, rebound, the changes in momentum are

My (V.2—-' u) = —my (V'l— u) = 52 .

If we call the ratio of the momentum changes the impact coefficient,

then u—vy Va—u
k= S,/S._, = =
vi—u u—vy

from the equation for conservation of momentum we get

my vy + My Ve m V'l + me V'g
u= e

ml+m2 m,+m3

Substitution yields
V'g — V'l
k= ——
Vi— Vg -



If, after the collision, the bodies move together (completely inelastic
impact), then Ve— vy =0 or k=0 ; if the bodies are completely

'i.e,,

elastic, then k=1 . Actually bodies are ""incompletely elastic, '
at the instant of maximum compression part of their total energy has already
been used up in distortions (permanent deformations), and part is stored elastically
in the compression region and is transformed into kinetic energy during
rebound. Thus the bodies have a different final velocity, and they separate
after the impact. The final velocities are

k(vy~--vy) my T Klvp—vam

V‘l u . ——— : V’t_’ B u i _— Y
my -+ my m; + mo

Vig—v'y = k(v — V)

4, Change in Energy

The decrease in kinetic energy of the two bodies after direct central

impact is . vH — v + vig— vy 1 — kY myma (Vi — g}
=m Mo = - .
v 2 m; + my 2

It is especially noteworthy that the energy difference of each of the
two bodies before and after the collision depends on the difference in the
squares of the velocities (v* — vty , but the total loss of kinetic energy depends
on the square of the absolute velocity difference of the two bodies before the
collision (vy—wv)* . For a completely elastic impact with k =1, the energy

loss is zero,

In a completely inelastic impact of two equal masses, the kinetic
energy loss with k=0 is
m
EV = “z‘ (VI—V2)’;
the original total kinetic energy

': (vit + vo') has been reduced to % (vi + va)?

If the second body is at rest before the impact, then Ve =0
1 — Kt , Mume

and E, =

2 ! ml+ﬂ12'

If the second body is an immovable wall, then my=occ, and y,=0 ;
m 2

hence E, = v (1 — kY . In the case of complete elasticity, the moving

body will rebound from the wall at full speed; if it is completely inelastic,
then it will remain at the wall and its total energy will be transformed into

deformation energy. The equation says nothing, however, about how the
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deformation is distributed between the moving bedies and the wall.

5. Impact Coefficient for Head-on Impact; Vehicle Spring Diagram

Only few numerical data are known concerning the actual elastic and
plastic behavior of motor vehicles. In order to derive a representation, the
deceleration diagram as given in (1) (pg. 305) for a heavy American passenger
car during impact against a solid wall was analyzed. The measured impact
decelerations b are given as a function of time t, Figure 1. Integration
gives fbdt=170mis . The measured impact velocity was 48.3 km/hr =

13,42 m/sec. Assuming partially elastic impact, the value of the integral

is 17.0=  (t+Kkv, = (1+k 1342 or k = 0,265,
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Figure 1 Time History of Impact of a Heavy Passenger Car Against
a Solid Wall; After (1)
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Figure 2 Spring Diagram of the Car of Figure 1



Recoil of the car begins after an impact interval of about 0,07 sec.
Repeated integration of the velocity Yo —fbd! derived in this way yields the
deformation distance s. At the point of reversal, its peak value is 51 ¢cm
while at the end of the impact the permanent deformation distance was 35.5 cm.
This agrees approximately with the data of Figure 13 of the cited paper (1)

where the permanent deformation for this speed is given as about 40 cm.

If we now plot acceleration vs. deformation distance s, we get the
"'spring diagram'' of the car which corresponds physically to the force-
compression curve of an energy dissipating spring. Its area thus represents
the work lost per unit mass. The initial kinetic energy of the impacting car
was v /g = 80,1 m¥/s? per unit mass while the diagram area was

8375 m¥s*, which again corresponds to k= 0.265.

The strong force fluctuations during compression correspond to the
collapse, one after another, of different parts of the car; since, according
to (1), these force fluctuations at the impact point are not propagated to the
center of gravity, we are obviously justified in assuming a smoothed force
rise for the deceleration of the center of gravity. Such a smoothed spring
diagram with the same area is shown dotted in Figure 2. The spring constant
per unit mass is ¢/m = 700 sec"2. This value is also the square of the
circular freq}1ency for the first impact phase. It gives a compression time

of 0.06 sec, somewhat shorter than the value determined in Figure 1,
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Figure 4 Schematic for Direct Collision of Two Cars Traveling
in the Same Direction



If this analysis is not absolutely exact and if the resulting impact
coefficient appears somewhat too high, nevertheless, consideration shows
that, for establishing physically reliable data -- e.g., for expert accident

evaluation -- one can begin with a linear spring diagram and the collision can

be treated as an oscillation problem,

6. Oscillation Calculation for Head-on Impact

A schematic of the oscillating system is shown in Figure 3; in any
case energy dissipating properties must be ascribed to the spring. The
process falls into two phases, namely the impact from the instant of contact
to maximum compression, and recoil until contact stops. For both phases
we have the same oscillation equation but with different spring constants @:

,,
X+ wx=0 with — = ot and P = cx

and with solution

x = asinwt (deformation distance)

% = —awtsinw! (deceleration).

For the first phase of the above example the force increase is given
approximately by c/m = w! = 700 s7* ; at the instant of contact the time is
t=0 and the initial velocity is % = v, = 1342 m/s = aw hence a = 0,508; this is
the maximum deformation which is attainedat ;= together with the

maximum deceleration Rpax = —aw? = —0,508 - 700 = 3556 m/s*.

The weight of a heavy passenger car is taken to be 1500 to 2000 kg;
thus the maximum collision force is about 53 to 71 tons. A passenger who
is not strapped in does not feel this impact peak; instead, he flies forward at
almost initial velocity of 13.42 m/sec and strikes against some part of the
car which has stopped abruptly. In this process, his head alone, with a

weight of about 4 kg, has a kinetic energy of about 32 mkg. 7mkg, however,
can be enough for a skull fracture.



According to the assumed idealized spring diagram, the impact force
drops abruptly at the instant of maximum compression. For calculating the
recoil phase we use the smaller spring coefficient ¢ and the corresponding
spring force P =c (x—4) . In the spring diagram, the area under the spring
expansion line represents the potential energy which is transformed back

into kinetic energy.

7. Oscillation Calculation for Head-on Collision

The collision of two cars traveling in the same or in opposite directions
can be treated in a similar way as an oscillation problem. The simplest
example is the collision of two equal cars traveling in the same direction with
one behind the other; this is considered according to the schematic diagram
of Figure 4. The further simplifying assumption is made that the elastic
and plastic characteristics of the colliding part of both cars are identical,
¢ = ¢ In the more general case, a reduced spring coefficient c= %
would be introduced. If other force effects (e.g. due to braking or propulsion)
can be neglected because of the shortness of the impact and the magnitude of
the impact forces, then for equal car masses their decelerations will always
X2 — X1

mﬁl [ mﬁz i € - .

2

be equal, % =—% . The equations of motion are then

_c .
From this we get X' TR X1=0 with

With m =m=m and @ =@=c¢ | this oscillation equation has

the following solutions:

. a . + a \ "
X1 = Vo — o (1 — coswl) X2= Vet - {l — cosw
a a
= —=)t+ Xp = (Vgg + - )t —
Xy (Vo1 (a) 2 (Vog ©
a . a
-+ o2 sinwl; — o2 sinwt .

Further, assume that both car masses are p, = 200 kgs*m , the initial
speeds are v, =40kmh=1111m/s and Ve = 20kn/h =555 m/s and the spring
coefficient corresponding to the above example is ¢ = 140, 000 kg/m. We

then get for the first phase



< = ¢ = . = g = “< =
m N 700; w = 26,46; t 2 0,0594

X1 = — 73,45 sinw! ¥2 = + 73,45 sinwt
X; = 2,78 coswt + 8,33 Xg = — 2,78 cosw! + 8,33
x; = 0,105 sinwt + 8,33 ¢; Xo = ~— 0,105 sinwt +8,33 1t .

At the end of the phase the compression at ¢ =005 seconds is

sinot =1.and coswt = 0; hence Py = 200 - 73,45 = 14690 kg, X; = x» = 833 m/s, xp = 8,33 - 0,0594 —
0,105 = 0,389 m, x; = + 8,33 - 0,0594 + 0,105 = 0,599 m

and (x;—xg = 0210 m,

A check again gives Prax = € (x3—xg)/2 = 14690 kg . The area under the

characteristic line of both springs P, (x,—xs/2 = 14680 - 0,105 = 1542,5 mkq
mn

corresponds to the value % vy —vpt. « If we assume an

impact coefficient of k= 0.2, then the total lost energy due to deformation

is E, = m (1—k) (vy—va)¥4 == 200 - 0,96 - 555¢/4 = 1478,4 mkg.
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Figure 5 Spring Diagram for the Figure 6 Time History of the Collision
Collision of Two Equal Cars With of Figure 5

Equal Elastic Characteristics

The area under the spring expansion line of the spring diagram of a

car must correspond to half the difference, i.e., 12 (15425 — 14784} = 32.5 mkg -

If the spring expansion constant is taken as 100, 000 kg/m, than the permanent

deformation will be 0.105 - 0.0253 = 0.0797 m and the maximum spring
expansion force will be 2530 kg, Thus the spring diagram can be confirmed.

With the above assumptions, we have v,—v, = k(vj—vg = 02 - 555 = L1l mis.



With equal masses this difference coincides uniformly with the common speed
of u=8,333 m/sec., i.e. V¢ = 8,888 m/sec and vi= 7.777 m/sec. For many

purposes, this result is already satisfactory.

Integration of the second phase and determination of the time history

start with the equation

mg, = —miy ™ ¢ (X — Xy~ A2

which leads to

¥'| = — 12,65 cos{2t X'2 = + 12,65 cosS
%1 = — 0,566 sinf2t + 8,333 X' = + 0,566 sinf2t + 8,333
x'y = + 0,0253 cosft + x'y = —0,0253 cos2! +

+ 8333t + Ky + 8333+ Kp

The time measurement for the second phase is started over from zero;
it takes “seconds. At! = {"we have cos2t = 0. and sinQt =1, and also Qt" = a/2;

with 2 = Vcim = y500 = 2235, We thus have ¢~ = 0,0702 seconds.

The constants K1 and K2 are determined from the final values of the

first phase x'j = 0,599 and x'x = 0,389 for «cosdt' = 1; they are K1= 0.5737
and KZ = 0.4143. Thus att= t, the distance is x*, = 8,333 - 0,0702 + 0,5737 = 1,1570 m
X" = 8,333 - 0,0702 + 0,4143 = 0,9976 m

']

and, as assumed, x1—x">=0,1594 m is the total deformation of both cars.

The collision process is shown in Figures 5 and 6.

8. Chain Reaction Collision

It has already been indicated that the degree of destruction in the direct
central impact of two bodies is proportional to the square of the (absolute)
velocity difference before the impact. Thus we can always start with the
relative vélocity and consider the impact as if one of the bodies was at rest
before the impact. This approach is also useful in clarifying the processor
in chain reaction collisions which have recently become common on autobahns.
Here it is often difficult to determine which of a number of collisions which
take place in a column in a very short time period is the first and original
one. As a rule these column collisions take place in poor visibility when
the following driver notices too late that the car in front has rapidly reduced

speed for some reason.
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As an example for estimating the resulting destruction, we shall
first use the limiting case of the simultaneous collision of three cars (of
equal size) whose velocity difference is, say, 20 km/hr. The speeds could
thus be, for example, 50...30...10...km/hr, Figure 7. In this case the
middle vehicle can be thought of as at rest, and the two others move toward
it with equal and opposite velocities of 20 km/hr, If all three vehicles have
the same mass m and the same elastic-plastic characteristics, then the middle

vehicle acts like a (partially elastic) wall; its velocity does not change as a

result of the impact. —D C Y OO
—~ 50 —=30 —=10 km/h

—= 20 0 0=
- [ foum
{ S

Figure 7 Absolute and Relative Velocity of Three Cars for Explanation
of Chain Reaction Collision

my

Figure 9 Spring Diagram of Simultaneous Collision of Three Cars
for Figures 7 and 8

For each of the two impacts, the equivalent oscillation diagram of

Figure 8 holds with a spring rate of € =c2d and the oscillation equation
.. C
X -+ E‘ X = 0.

The frequency is

JY/E )T
w m 360 v350 18,7.
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For the compression phase of the process we have the equations

x=asinwt; X=awcoswl; X=—aawtsinm!

at t=0,x=0 and x=v,= 555 ms

whence @ = 555187 = 0,297 m,
At maximum compression ! = r; Xg = a, Xx=0 and —¥mx = T aw’
= 0297 - 350 = 10395m/s*  The resulting maximum force is then Ppay = MEny =
Cxmax = 20790 kg we_again have the relation for the transformed initial energy
Eo = mvo¥2 = Ppyyxpay/2 = 3080 mkg . With an impact coefficient of
k = 0.2, the deformation energy which is converted into kinetic energy after

recoil is E = 02t . E, = 1232 mkg .

With the recoil spring coefficient of the previous example ¢ = 100, 000
kg/m, the permanent deformation is 11,34 mm. The spring diagram is shown
schematically in Figure 9. As can be seen, displacements, accelerations
and forces are larger than in the previous example because the middle car
cannot move with the impact. The energy absorbed in deformation in this
double collision is twice 2957 mkg, i.e., each of the two impacts gives twice
as much destruction as a single impact with the same velocity difference.
This would also be the case if the first and third cars collided without the
second car being present, but with a different distribution. It has been
assumed here that the impact coefficient is constant independent of the

*
amount of compression, which is probably not the case.

This comparison of the separated with the simultaneous collisions for
velocity differences of 20 km/hr is no longer permissible if the collisions of
the cars are separate even though they follow one another very closely. In
that case they no longer take place with velocity differences of 20 km/hr.

If the impacts are almost completely inelastic and if, for example, car 3
strikes car 2 first, then both end up with a speed of about 40 km /hr and
hence, car 2 strikes car 1 with a velocity difference of 30 km/hr. On the

other hand, if car 2 strikes car 1 first, then both end up with a speed of about

*In this connection, see the paper by Prof. Eberan-Eberhorst, ATZ 1961,
p. 272, Figure 15 which appeared after completion of this manuscript,
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20 km/hr and car 3 hits them at 50 km/hr, If we ignore the possibility of
repeated collisions, then the sum of the destruction energies is
in the first case -
“E, = 1}(1——1&) (13,88-—8,33)8 + (11,11 —2.77)¢
and in the second case
E, = ';' {1—k?) (13,88 —5,55)! + (8,33 —2,77)*
or 4200 mkg in both cases compared with 2957 mkg for two separate collisions

with velocity differences of 20 km/hr.

The time history of such multiple collisions can also be investigated
using the above methods if the initial velocities are known precisely enough.
Unfortunately, this is not generally the case. Also the tackographs installed
in trucks and buses generally yield no usable velocity records after the first
impact. Further, these considerations show clearly that with multiple
collisions the visible destruction can be far greater than experience with
single collisions would suggest, or conversely: there is the danger of over-

estimating the speeds of chain reaction collisions.

9. Right-Angle Collision of Motor Vehicles

If, for example, two motor cars collide at right angles at a crossroad
and if the front of vehicle 1 strikes the side of vehicle 2, then at the impact
point there is a resultant impact force of £ P whose direction at the instant
of contact is given by the direction of the relative velocity v,q . For the
special case shown in Figure 10a, the impact force + P acting on car 2
passes through its c.g.; hence for vehicle 2 we are dealing with an oblique
central impact. The reaction force - P acting on vehicle 1, however, misses
its c.g.; thus it experiences an oblique eccentric impact. Consequently, the
subsequent motion is different for the two vehicles; vehicle 2 is first shoved
along, without rotation, in the direction of the common velocity u at the

impact point while vehicle 1 experiences an additional clockwise rotation

which absorbs some energy.

In order to calculate the magnitude and direction of the velocities after
impact, the assumption is made that the friction forces on the wheels are

vanishingly small relative to the impact forces, hence that external forces

13



need not be considered while the impact takes place. It is further assumed
that the impact interval is infinitely short so that the vehicles carry out no
significant motion during this time. This assumption must later be checked

with the result.

The line of action of the force + P can be shifted to the c. g. of vehicle
2 and broken into components P1 and P2 in the original directions of motion
P1 causes a displacement normal to the original direction of motion while
P, decreases the original forward velocity v:. There is no rotation of
vehicle 2. The force - P is decomposed at the impact point into the correspond-
ing opposite components. - P then passes through the c.g. of vehicle 1
and decreases its original speed vi. If we also apply the forces £P,, at the
c.g. S], then it is seen that Pz causes a displacement normal to the original
direction of motion of vehicle 1, and also that the force couple PP; results

in rotation about the c. g. Sl .

This force decomposition is valid for each instant of the impact, and
hence also for the time integral of the impact components. Thus the law of

conservation of momentum can be applied. Hence, for vehicle 2

Ipldf = Mgvlgl; IP;dl = M: (Vg-— V‘z)]a

For vehicle 1| we have
!Pldl = Ml (VI—V'“): IP:_)dl = MIV']:.
Further, for the force couple on vehicle 1
ny
pfPydt = Myityw, OT [Pydt=M, wy .
p
Equating appropriate terms gives
JPydt = Mgv'yy = My (vi — V')
7
fpgdf = Miv'ie = Mg (vy— Vi) = M, © Wy
p

(This relation is given incorrectly in (2))

Further, under the above assumptions, the velocity v« of the system

c.g. 5 remains constant, and we have the vector equation

A N
M,vl + M2V2 = (Ml + M2) Vg = M,v', + Mgv'e .

14



Finally, under the assumption of '"complete impact' the impact points
of both vehicles at the instant of greatest compression must have the same
velocity u. For central impact on vehicle 2, this is identical with the
translational velocity v: of the c.g. S: and of the entire vehicle 2. For vehicle
1 we have the vector equation (at the impact point)

A A
u-s vk v tap °

Using these relationships and with the simplifying assumption that

M1 = M2 = m, Figure 10b shows the vector diagram of the momentum and

velocities for v, = 12 and v, = 8 m/s, m = 100 kgsZ/m. The relations now
simplify to

Figure 10a Right Angle Collision at Crossroad; Location of Collision and
Final Positions of the Cars; Decomposition of Impact Force

mvys 1200
e ——
e

o2

Figure 10b Vector Diagram of Velocities and Moments for Figure 10a
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Figure 11 Limiting Case of Right-Angle Collision; Above: Impact Force

Decomposition; Below: Vector Diagram of Velocities and
Momenta

Figure 12 Oblique Collision; Left: Vector Diagram of Momenta; Center:

Decomposition of Impact Force; Right: Vector Diagram of
Velocities

For numerical calculation it was assumed that i = 1,3 and p = 2.0.
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No assumption as to the impact direction was directly required in
order to calculate the velocities; a requirement was that the force, as a
vector, was in the direction of the c.g. of vehicle 2, Actually, the
assumption of infinitely short impact time and hence the constancy of the
direction of P are not strictly correct., At the instant of contact P is in the
direction of v,, ; at the instant of maximum compression when the impact
points of both cars have velocity u and hence no tangential forces can be
transmitted, the direction of P must obviously be perpendicular to the

direction of u.

The further motion of the vehicles until they come to rest is

discussed below.

Another limiting case of right-angle collision is shown in Figure 11,

For equal masses of the two vehicles we have

n n
A Vi + va V'l + Vo
mvy + mvg = 2MVy; V = - —owosee 88 e e
1 2 & Vg 2 2
momentum laws yield

J

Ipldt = mV'gl =m (Vl— V'“) = 'q' wa
J

[Pdl =mvig=m(va— V') = - w;

p

In determining the distances p = b—altgf and ¢ = b-a-igf the impact
direction must be assumed. If we choose for this the direction of Vi,
then, from what has been said above, there is an error whose magnitude
must be checked later against the result and which may have to be improved

in an iterated calculation.

Under the assumption that, at the instant of maximum compression,
the rotational velocities wr of the two cars at the impact points are perpendi-
cular to the directions ,, we get the following additional relationships from

the velocity diagram

vyt wyrsina = vy + wer cosu .
Ve + wyor sina = v'jp + ayr cosa with tgu == aib -

17



Thus, all velocity components can be calculated; the angular velocities

are derived from ) 1 cosa+20p 2t
wy | rsin@e— —————— | — +recosal| -

1 sina . q ]
Vg 2it
= —v)— ————{---—+r: cosa
r-sine \ q
21
wp | 1 cosa + =)= vy 4w resing o
q

The difference in direction between v, and the velocity rotated 90°
@ again shows the uncertainty in the assumption of an average momentum

direction which , in any given case, can be corrected by repeated calculation.

10. Oblique Collision

The solution of this problem using the same method is presented in
the example of Figure 12. After the impact forces P are shifted to the
longitudinal axis of the car and the components are determined along the two
original directions of motion, we get for vehicle 1

Jpldf + cosa Ipedt = Ml (Vl -— V'“)
p * sina [Podt = Jyw = MyiYywy; sina [Pedt = Myvy, o

Vehicle 2
JPedt + cosa [Pydt = Mg (vo— v'g9)
q - sina [Pydl = Jowe = Moi*awy; sina [Pydt = Mgvy, ,

The velocities v, are always perpendicular to the original direction

of motion.

From the velocity diagram we get for the components in direction 1
v'yy + Veacose = vggsina + w Iy coso + wars cost
in direction 2

Vios + V'yy cosa = vy sina + wyry cos (a —g) +
+ wgrg cos (a +1) .

From these relations the velocity components can be calculated. They are

p q
W= —- v wy= - — v
1 i 1q 2 , 2q
M. 1
Vig= o (Ve — Vi) — == (vy—v'yy)
la M;sina tga i

18



M, 1

Vig s comm e e (V= V) o == (Vg — v
b Mssina ! i tgu 2 2) .
With the abbreviations
pr cos(a—aq) Grs cosfa+rT)
A= e e emmemee e b= eem e
# sina 2 sina
pr Cos o qrs Ccos T
C= =——n ..«4.._'..."‘_4.. : d= - - e -
¥ sina iy sin ¢

A= (1+dcosa—b;
C=(l+a —ccosaq;

B=(1+d)—bcosu;

D= (l+a)cosa—c;

My
E=sina[l +a) (1l +d)—bc|]; F= E/sina; u= -};If-
1
C+ Fiu A—Fcosa Flu Fcosa nE Fcosa
Vi + =v - T Ve -
Fecosa—D uF+B | Fcosa—D uF+B pF+8B Fcosa—D |
uF+ B Fcosa~—~D uE Fcosa Fcosa Flu
v'..zs .....-.__.,..__..{._.__..._.._.__._ = v2 —oe o—— iea. = . eram meees _.Vll R
A—Fcosa C+ Flu A—Fcosa C+ Flu A—Fcosa C+ Fl
A, B . CcC, . D
Ma= Vg tvee v = vy phve .

As in the previous examples, the precise direction of the
average momentum is not known and must be corrected in each case

according to the determined direction of u.
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11, Energy Balance

The previous considerations hold only for the impact period itself.
The subsequent motion after the impact forces stop are given, on the one
hand, by the previously determined velocities and directions of motion
directly after the impact and, on the other hand, by the external resistive
forces on the path to the final vehicle position. These latter can be treated

by means of an energy consideration.

In a collision of two vehicles in straight motion, the initial kinetic

energy at the instant of contact is TE, = M, v + M, Vi
o
2 2

During the impact, part of the initial energy is dissipated in destruc-
tion (permanent deformation) and part is stored temporarily in elastic defor-
mation. During recoil, this latter amount is reconverted into kinetic
energy. According to the above considerations, it is relatively small and hard
to take into account; therefore energy balances are generally set up under
the assumption of a completely inelastic impact so that calculations may be
carried on with the linear and angular velocities determined for the instant
of maximum compression. For each of the vehicles involved, the kinetic

energy of the vehicles involved just after the impact is
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This remaining energy is dissipated by the work of the external forces

on the appropriate paths, E = Wds.

For practical application to accidents, the energy balance should
generally be developed backward, i.e. starting from the work of the
resistive forces. This is only possible if sufficient data concerning the
motion of the vehicles are available from track marks, measurements or

photographs. In the following some examples of this are given.

12, Energy Balance of the Right-Angle Collision

Figure 10a shows the final positions of the vehicles. In the present
case the vehicle velocities were known quite precisely: they were v;= 12 and
V: = 8 m/sec. The masses of the two vehicles were approximately the
same, m = 100 kg seczlm. The lever arm is taken as p = 2 and the radius

of gyrationas i = 1,3 m,

Thus the total initial kinetic energy was

m
E, = ) (v + v¥) = 50 (144 + 64) = 10400 mkgq.

Directly after the impact, vehicle 2 has a translational velocity
Ve = u=V5I7+60' m/s; no rotation results from the collision. Its

energy directly after the impact is thus  Fg= 50 (617 + 6,09 = 3704 mkg,

The translational velocity of the c.g. of vehicle 1 just after the
impact is v, = yg6+1.8%¥m/s , the angular velocity about the c. g. is

W1 = 2.17. Thus, directly after the impact, vehicle 1 still has an energy of
E'y = 50(6,0* + 1,83+ 1,31 - 2,172) = 2365 mkg.

Since both drivers were severely injured, they could no longer take
an active part in the further motion of the vehicles; the directions of motion
are so strongly altered in the impact that the steering system is ineffective;
thus the c.g. motion can be assumed to be rectilinear. For vehicle 1 the
friction coefficient for sideslip on the damp asphalt of the road can be taken
as #g = 0.35; it is somewhat greater for vehicle 2 x, = 0,38 since it moved
partly on the rougher sidewalk.
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When the left front wheel strikes the curb, it receives a rotation of
about 45°. The rotation of vehicle 1 is about 160°., The distances traversed
to their final conditions were 9.0 m for vehicle 1 and 10.2 m for vehicle 2.
The sideslip and roll components are determined by decomposition into the
original direction of motion and normal to it., The roll friction coefficient

is taken as # = 0,02, Thus we get for

Vehicle 1
Work of Rotation 1000 0.35 3.5 = 2225
Work of Sideslip 1000 0.35 2.9 = 1015
Work of Rolling 1000 0.02 8.8 = 176
= 3416 mkg
Vehicle 2
Work of Rotation 1000 0.38 1.9 = 742
Work of Sideslip 1000 0. 38 = 2698
Work of Rolling 1000 0.01 9.2 = 144
Lifting Work of Curb
Impact Loss at Curbabout 1000 0.15 = 150
= 3734 mkg

13, Oblique Impact of Motor Car and Rail Vehicle

Figure 13 is the vector diagram of the momentum for the collision of
a bus with a local train on an unrestricted crossing. The bus was struck
approximately in the middle by the locomotive and carried along over a
known distance s. After the crossing, the underside of the bus skidded
along the rails, and the front and rear wheels hung free on both sides of
the raised track bed. The speed of the motor vehicle was known; the prob-
lem was to determine whether the train had exceeded the prescribed speed

limit at the crossing. e
2%

—> s
A W i
TRAIN 2 (g;.’ﬂ’-’ ';
= e !
{meemp)u-cos
BUS

Figure 13 Oblique Collision of Motor Car and Rail Vehicle; Sector
Diagram of Momenta

22



In the vector diagram the common resultant velocity is given by the

quantity("‘k'*'mz’ 4rcosa gince the direction of motion is constrained by the rails.

The known distance s is traversed while overcoming resistances which
dissipate the kinetic energy remaining after the impact. They consist, for
example, of braking or climb resistance, rubbing against the rims, lifting
work in derailing axles, drag of trailing machine component sliding along
the rails and the sliding resistance of the bottom of the bus against the rails,
(In analyzing the accident these were actually considerable differences of
opinion relative to the question of to what extent there was a lubricating
effect as a result of the machine and diesel o0il, water, blood and coal dust

spilled during the accident.)

The proof starts by setting up as precise as possible an energy
balance which must be adjusted so that the actually determined distance is
reproduced. The initial kinetic energy of the train which is required for this

yields the desired train velocity.

There are two criticisms of this line of reasoning: first, the common
velocity u-cose assumes a completely inelastic collision. If, however, the
impact is partially elastic, then the much larger train mass attempts to
accelerate the smaller bus mass. Second, the assumption of a compact
train mass m, is arguable. The train is more nearly a chain of elastically
coupled masses. In the first instant of the impact, only the front mass of
the locomotive is effective; after that a considerable part of the kinetic energy
is successively stored in the buffer springs mainly in the form of reversible

stress energy; accordian type of oscillations are set up in the train.

These transformations of the actual process relative to the assumed
inelastic impact result in a weakening of the impact peaks and an increase in
impact duration; added to this is the mobility of the masses which are not
fixed to the vehicles (water, coal, passengers); at first they fly more or less
freely forward and only later, namely when they strike something, do they

take part in the impact effect.
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In the present case, the indicated calculation gave an irreversibly
transformed energy which was obviously too large. For given resistances
and free paths, the initial kinetic energy and hence the initial velocity of

the train come out too large.

The measured slide path was s = 50 m; the mass of the train with
the contribution of the rotating masses was mz = 15, 000 kg secZ/m; the
mass of the bus was m, = 1000 kg secz/m; motor vehicle speed was
Vi T 18 m/sec; roll resistance of the train was 2.5 kg/t. Assume the
collision took place with a freely rolling train on a 6% grade at an angle of
125°. The resistance of the machinery parts which hung down is taken
as 400 kg. If we assume, for a first cut, that all forces including sliding
resistance between the motor vehicle floor and the rails are constant, then
the rectangle of the sum of the forces over the slide distance s represents
the total dissipated energy E'. The potential energy due to the grade is
regarded as drive force with reversed sign. The constant path-average

of the deceleration of the joined masses is then bn = P/(m, +my),

N

2000 3 '/'
kg | T

000 |
d=1825 kg

. \__s_Som
cr TN A
-S0p 0723 74087
-1000

Figure 14 Oblique Collision of Motor Vehicle and Railroad Train,
Energy Balance

In the vector impact diagram we have
{m, +my) u' = m, v, — my vy sin 35° Oor 16000 u’ = 15000 vg~-1000 - 18 -- 0,5736
or U =u-‘cosa= 0937v,—0,645,
Now, if the train had the prescribed value of v;= 15 km/hr = 4,17 m/sec,

then the speed of the joined masses directly after the collision would be
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4= 3,91 - 0,645 = 3.265 m/sec. To achieve the slide distance & = w2b = 50 m,
we would need a deceleration of path-mean value bm = 0.1064 on an average

sum of resisting forces of Pm = 16,000 0.1064 = 1700 kg. After subtracting
the remaining, known applied forces, we thus get for the force of the sliding
resistance between the bus floor and the tracks 1825 kg. The question of
whether the train exceeded its permissible speed limit is reduced by this
consideration to the indication of whether the sliding resistance was greater than
the determined value of 1825 kg. Since this resistance obviously depends on
velocity, a stepwise integration would be required for a more accurate

calculation.

For this we must have an experimentally or theoretically determined
curve of friction coefficient » as a function of sliding velocity v which takes
into account the given lubrication conditions. The coefficient of friction
decreases with increasing speed, and more rapidly for lubricated than for
dry surfaces. The friction force is P=Gu; for the postulated initial velocity
of v=15km/hr = 4,17 m/sec we get the appropriate friction coefficient
from the curve #= f (v). If we take this or a slightly higher value for a short
time interval as a constant, then all resistances are known; the velocity

decrease caused by them in this time interval can be calculated.

For the next small time interval a new value of M is taken from the
curve of #= { (v) for the lower velocity, and the calculation is carried along
until the body comes to rest. If the total skid distance determined in this
way in the example is not less than the measured distance (50 m) or the path-
mean value of all resistances is not greater than 1825 kg, then the initial
velocity of the train was not greater than 15 km/hr, which was to be proved

Figure 14,
SUMMARY

The theoretical fundamentals of the impact process were first
developed. Then - in part by means of practical examples - it was shown
that a combined application of impact laws (vector diagram of momenta)
and of the law of conservation of energy (Energy balance of resistance

energy after impact) makes possible in many cases a complete explanation
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of the motions and velocities in the collision of motor vehicles. The

reliability of the assumptions made in this process is thereby reinforced.
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