

The effective mass at point $B=M\left(\frac{k^{2}}{k^{2}+l^{2}}\right)$
The center of percussion is located R^{2} / ℓ inches forward of the $C G$, where k^{2} is the radius of gyration squared for rotations about the $C G$,

Since the center of percussion does not move laterally in response to force F, the motion at point A is a simple ratio of that at point B and at the $C G$.

$$
\begin{equation*}
\ddot{y}_{A}=\ddot{y}_{B}\left(\frac{l_{C p}-l_{A}}{l_{C P}+l}\right) \tag{1}
\end{equation*}
$$

Since $l_{C P}=k^{2} / l, \quad \ddot{y_{A}}=\left(\frac{l^{2}-l l_{A}}{l^{2}+l^{2}}\right) * \ddot{y}_{B}$

$$
\ddot{y}_{C G}=\left(\frac{k^{2}}{k^{2}+l^{2}}\right) \ddot{y}_{B}
$$

Check of eqin (1)

$$
\begin{aligned}
& \text { If } l=0, \ddot{y}_{A}=\ddot{y}_{B} \quad(\text { No yaw rotation }) \\
& \text { If } l_{A}=0, \ddot{y}_{A}=\left(\frac{k^{2}}{k^{2}+l^{2}}\right) \ddot{y}_{B}=\ddot{y}_{C G}
\end{aligned}
$$

$I F l_{A}=A$ (Distance from CG to front wheel),

$$
\ddot{y}_{A}=\left(\frac{k^{2}-A l}{k^{2}+l^{2}}\right) \times \ddot{y}_{B}
$$

For $\ddot{y}_{A}=0, k^{2}=A l$
If $l \approx B$ (Distance from $C G$ to rear wheels),

$$
k^{2} \approx A B
$$

Note that on many automobiles, k^{2} is sufficiently close to the product $A B$ to produce yaw rotations about a point hear the front wheel.
(Tire forces are neglected in the preceding analysis,)

